R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

USING WEKA FRAMEWORK IN
DOCUMENT CLASSIFICATION

Radu G. Cretulescu’, Daniel I. Morarin’, Macarie Breazu’

123 «

Lucian Blaga” University of Sibiu, Engineering Faculty, Computer Science and Electrical and
Electronics Engineering Department, Romania

Abstract

Text document classification problem is a special case of a supervised data mining problem. In order to
solve a text document classification problem some steps are required to fulfill. The common steps are:
feature extraction, feature selection, classification, evaluation and visualization. The WEKA is a
framework that helps us with all these steps. WEKA was initially developed as a library of java classes
that help us to implement data mining applications. In the last years, in order to avoid java programming
skills, the components from WEKA are also available into a visual form inside “WEKA Knowledge
Flow Environment”. We have studied and present in this paper some of the most important visual
components that are available in the WEKA framework for the previously presented steps. These
components are: “Arff Loader”, “Attribute Selection”, “Normalize”, “Train Test Split Maker”, a lot of
classifier algorithms, “Performance Evaluator” and “Text Viewer”. In order to prove the functionality of
the visual framework in text document classification we have made and present some experiments. The
most important advantage of the visual WEKA framework is the possibility to test different approaches
without programming abilities.

Keywords: Document Classification, WEKA Framework, Visual Tools.

1. Introduction

Text document classification problem is a special case of a supervised data mining problem. In
order to solve a text document classification problem some steps are required to fulfill. The
common steps are: feature extraction, feature selection, classification, evaluation and visualization.
The WEKA is a framework that helps us with all these steps. WEKA was initially developed as a
library of java classes that help us to implement data mining applications. In the last years, in order
to avoid java programming skills, the components from WEKA are also available into a visual form

inside “WEKA Knowledge Flow Environment”[7].

2. WEKA framework

WEKA (Waikato Environment for Knowledge Analysis [7]) offers a framework that
contains a collection of machine learning algorithms implemented for solving a lot of data
mining problems. The algorithms are written in java and are available open source for
integrate in your projects. But, for avoiding the programing part, WEKA offers also a
framework that permits you to describe your data mining application as a flow of actions
and to evaluated it, without the need to write code. If you want to use WEKA for analyze

your specific data, you need to write some code in order to transform your dataset into a
format that is accepted by WEKA.

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

WEKA offers four different options for realizing your data mining process. The WEKA
Knowledge Explorer is an easy to use framework with a graphical user interface that offers
all the facilities of WEKA package, grouped in some general steps as preprocessing,
classification, clustering, attribute selection, etc. For an unexperienced user, that has only
some knowledge in data mining, this framework helps you, because it forces you to
consider all the steps that need to be used into a standard data mining process.

Another framework is Weka Experiment Environment that permits you to create, run and
modify an experiment into a simple manner. The experiment can be described into a text
file and tested into the WEKA framework. This is for a more experimented user.

WEKA KnowledgeFlow Environment permits you to describe your experiment as a flow

of steps with some visual connections between them.

The last framework is the WEKA Waorkbench that contains a lot of state of the art data
preprocessing and machine learning algorithms. In this framework the user can quickly try

out existing machine learning methods on new datasets in a very flexible way.

In this paper, for feature selection, classification and evaluation steps, we have used the
WEKA KnowledgeFlow Environment [1]. The project flowchart realized in WEKA is
presented in Fig. 1.

: dataset datas FI.‘...@I- dataSet b
a..ijnrp = 4 l,;“ ——— TI—J\ —dmatly 4

o
Read Reuters SelectClass Infomation Cross'alidation
FAriftfFila Gain Selection
raining Set
s test Sat
:_m: i ¢ text *E d batch Classifier ‘ Pieies b ¢ trainingSet of |k
- g%l " v EST. | .
5 - 10% MNAIVE 1
Text iewer Clazsifiar Clazsifiar TrainTest
Ewaluatar MNaiveBayes Splithaker

Figure 1 The WEKA project
In the following we present the components used in this project and a brief description of
them as given by the WEKA framework help [8].

2.1 The ArffLoader Component

The first think that need to be done in each text mining project is to specify the dataset.
For loading the dataset the WEKA framework has a lot of components as ArffLoader,
DatabaseLoader, LibSVmLoader, XRFFLoader, etc. Those components can be found in
the DataSource group and offer 12 different format input files. For our experiment we
have chosen the arff format and we decided to use the Reuters dataset [6].

The Reuters dataset that is a collection of news published by Reuters agency into a XML
format. All the preprocessing steps for transforming the dataset from plain text into an arff

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

format were done into a different java application. The arff format that must be given to
WEKA contain a list with all attributes used into the dataset (defined with name and type)
and after the “@data” directive a list of each sample (one on a line) with values for each
attribute. We prefer that the last attribute is the class (if the document is contained into a

specific class or not in).

The format for the arff file is:

@relation Reuters
@Qattribute 'AQO' numeric

@attribute 'Al' numeric

@attribute 'A6998' numeric
@attribute 'A6999' numeric
@attribute 'class' {'yes', 'no'}
@data

2,2,1,1,1,..,0,0,0,0,0,no0
0,0,1,0,1,..,0,2,0,1,0,yves

For this component, only the input file needs to be specified, as in Figure 2. The file needs
to contain the entire dataset (both the training and the testing part).

& X
ArffLoader options
About
Reads a source that is in arff (attribute relation file format) | Mare
format.
retainStringVals | False r]
useRelativePath | False v]
Filename E*.Experimenteﬁ.r-.ﬂultiCIass_IG_Data_Lucau:i_.'-"EIEIEI.EI.arﬁH| Browse...
[OK il Cancel J

Figure 2. The ArffLoader Component
The two existing configurations are only for specify in what format the string arguments
will be kept in memory (as string or not) and how the path for the input file is specified
(useful when the experiment is moved in other part).

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

2.2 The ClassAssigner Component

After choosing the dataset, you have to use a component where to specify what attribute is
considered as the desired class in the dataset (because we talk about a supervised
learning)[5]. Such a component can be found into the “Evaluation” folder. The
component is included in this folder because it is related to the evaluation algorithm and
depends on how the evaluation will be done. The only configuration that needs to be done
in this component is to select from a list the name of the attribute that is considered to be
the class. In the presented experiments we have considered that our documents are into the
class (and labeled with “yes”) or not in the class (and labeled with “no”). Thus, we have
considered a binary classification. The ArfflLoader component permits you to specify a
dataset with more classes, not only for binary classification.

In this framework, in order to establish what type of data will be transferred, a connection
between components needs to be realized. Between ArffLoader and ClassAssigner
components a “dataSet” connection should be used.

2.3 Attribute Selection Component
We decide to put this component in our experiment because we want to have the possibility
to choose only a reduced number of attributes. We use the AttributeSelection component
for selecting the best features. The component is in the Filters tab in the supervised area.

Attribute Selection options

About

A supenvised attribute filter that can be used to select attributes. Maore

Capabilities

debug |False v

doMotCheckCapabilities | False ‘I’J

evaluator Choose |InfoGainAttributeEval

search Choose |Ranker -T-1.78976931348623157E308 -N 1800

—

oK J [Cancel J

Figure 3. Attribute Selection Component
This component is a supervised attribute filter that can be used to select desired number of
attributes. It is very flexible and allows various search and evaluation methods to be
combined. In the evaluator property we can determine what method of attribute selection
is used. The component supports attribute selection methods like: InfoGainAttributeEval,
GainRatioAttributeEval, OneRAttributeEval, PrincipalComponents analyzer and more

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

others [2,3]. We have used the Information Gain Attribute Evaluation method. In the
search property the method used in selecting the best attributes is specified (i.e. Ranker,
BestFirst or GreedyStepwise). For the Ranker search method, that we have choose, the
characteristic window as in figure 4 can to be configured. The Ranker component ranks
attributes by their individual evaluations.

€3 weka.gui.GenericObjectEditor *

i welka.altributeSelection. Ranker

About

Ranker : Mare

Ranks attributes by their individual evaluations.

generateRanking | True rJ

numToSelect 1900

startSet

threshold | -1.7976931348623157E308

11 Open... |l Save... Il Ok, Il Cancel |

Figure 4. The Ranker properties
The generateRanking true is an imposed option. In the numToSelect field we can specify the
number of attributes that are retained after selection. The default value (-1) indicates that
all attributes are retained. In the field startSer we can specify a set of attributes that are
overpassing the Ranker. When generating the ranking, Ranker will not evaluate the
attributes that are in this list. In the last characteristic the threshold we can specify the
threshold by which the attributes are discarded [2]. In our experiments we have used the
default value for the threshold and have changed the numToSelect as desired in the range
200-5500 as presented in the experimental results section.

In the connections between the previous presented components we have selected as option
to transfer form one component to another the dazaSet option.

2.4 TrainTestSplitMarker

Until now we work with the entire dataset. Now we need a specific component that permits
us to split randomly our dataset into a training part and a testing part. For this we can use
TrainTestSplitMaker component that can be found in the Evaluation folder. This
component is from Evaluation tab because it is also part of the evaluation process. This
component permits at configuration to specify the percentage of training dataset and the
random seed in the input file. This component generates two different outputs: one output

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

contains the training part form the dataset and the other contains the testing part. Therefor
between this component and the next one we need to connect both outputs.

The Weka also permits to implement the CrossValidation idea, having a different
component for this in the FEvaluation tab, called CrossValidationFoldMaker. This
component permits us to specify the number of experiments that are made with different
splitting’s of the dataset before showing the average result.

2.5 Classifier NaiveBayes

The WEKA framework contains a lot of learning algorithms, as classifier, clustering and
association algorithms. The classifier algorithms have a specific tab with the Classifier name
where a lot of algorithms from different categories (as bayes, rules, trees, lazy and more) can
be found[3, 4]. WEKA has also a Clusterers tab with learning algorithms as EM,
Hierarchical, Simple KMeans and more. For our experiments we use a classifier algorithm
because we have a dataset that is already classified. We chose NaiveBayes classifier
algorithm because it has a small number of characteristics that need to be specified.

NaiveBayes options
About
Class for a Naive Bayes classifier using estimator classes. Maore

Capabilities

batchSize 100

debug | False

displayModellnQldFormat |_Fa|se

EIRCINEINIEN

doMotCheckCapabilities | False

numDecimalPlaces 2

usekemelEstimator | False 'J

usesupenvisedDiscretization | False 'J

Additional options

Classifier model to load |:J Browse...

Resetincremental classifier | False 'J
Update incremental classifier |_True 'J
oK I Cancel)

Figure 5. Naive Bayes characteristics

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

This component is form Classifiers tab, in bayes region and is an implementation of the
Naive Bayes classifier using class estimators. Precision of numeric estimators are computed
based on the analysis of the training dataset. For all the parameters for this component (as
debug, displayModellnOldFormat, useKernelEstimator, wuseSupervisedDiscretization and

more) we have used the default values.

2.6 Classifier Evaluation
The previously presented component implements a learning algorithm. For evaluating the
learning performance we need to use an evaluation component, from the Evaluation tab.
We chose the ClassifierPerformanceEvaluator, that is designed to evaluate classifier
algorithms. As configuration for this component we need to specify the evaluation metrics
that has to be computed. The WEKA has a lot of evaluation metrics already implemented
(as accuracy, precision, recall, f-measure, TrueRate, NegativeRate [9]). Default all 25
evaluation metrics already implemented in weka are selected. In our experiments we use

only precision, recall accuracy and true rate.

2.7 TextViewer

For showing the results the WEKA propose a lot components grouped in the Visualization
tab. Some components show the results graphically, while others write all the results in the
text files. We chose for our application to write the results into a text file.

3. Conclusions

We have studied and present in this paper some of the most important visual components that are
available in the WEKA framework for the previously presented steps. These components are: “Arff
Loader”, “Attribute Selection”, “Normalize”, “Train Test Split Maker”, a lot of classifier
algorithms, “Performance Evaluator” and “Text Viewer”. In order to prove the functionality of the
visual framework in text document classification we have made and present some experiments. The
most important advantage of the visual WEKA framework is the possibility to test different
approaches without programming abilities.

4. References

[1] Ian H. Witten, Eibe F., Hall, M. A., Pal C.J., Data Mining — Practical Machine
Learning Tools and Techniques with Java Implementation, Morgan Koufmann Press,
2000

[2] Han, J., Kamber, M., - Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001;

[3] Manning, C., - An Introduction to Information Retrieval, Cambridge University Press,
2009;

[4] Tom. M. Mitchell, Machine Learning, The McGrow-Hill Companies, 1997

[5] Mitkov R., The Oxford Handbook of Computational Linguistics, Oxford University
Press, 2005;

R. Crefulescu et al. / International Journal of Advanced Statistics and IT&C for Economics and Life
Sciences, Vol. 6, Issue 2 (2016)

[6] Misha Wolf and Charles Wicksteed - Reuters Corpus:
http://trec.nist.gov/data/reuters/reuters.html, accessed in 03.2016

(7] http://www.cs.waikato.ac.nz/ml/weka/, accessed in 03.2016

[8] http://www.cs.waikato.ac.nz/ml/weka/documentation.html, accessed 03.2016
[9] https://en.wikipedia.org/wiki/Precision and recall, accessed 03.2016

http://trec.nist.gov/data/reuters/reuters.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/documentation.html
https://en.wikipedia.org/wiki/Precision_and_recall

